<u> </u>
_
Ω
⊆
Ø
\Box
Ν
0
ď
نب
\supset
Ф
≷
≷
>
>
$\overline{}$
$\overline{}$
•••
Ф
-
-
_

Title (Analiza numeryczna)	Code 1010102121010110442
Field Civil Engineering Second-cycle Studies	Year / Semester 1 / 2
Specialty Structural Engineering	Course
Hours Lectures: 2 Classes: 1 Laboratory: 1 Projects / seminars: -	Number of credits 2
·	Language
	polish

Lecturer:

prof. zw. dr hab. inż. Tomasz Łodygowski

Instytut Konstrukcji Budowlanych

tel. +48 (61) 665 2450, fax. +48 (61) 876 6116 e-mail: tomasz.lodygowski@put.poznan.pl

Faculty:

Faculty of Civil and Environmental Engineering

ul. Piotrowo 5 60-965 Poznań

tel. (061) 665-2413, fax. (061) 665-2444 e-mail: office_dceeaf@put.poznan.pl

Status of the course in the study program:

Numerical analysis

Assumptions and objectives of the course:

The bases of advanced numerical methods (nonlinear mechanics, nonstationary heat transfer, optimization, fracture analysis);

Using very advanced computational environment and responsible structural analysis with using different numerical models;

The responsibility of an engineer for the quality of computational models

Contents of the course (course description):

Presentation of selected theoretical bases of mechanics used in advanced computational environment; presenting of the organization of computer program (eg. ABAQUS);

The students will be trained in building the responible models and will present the results of own computations for different models; preparation for the advanced master theses

Introductory courses and the required pre-knowledge:

basics of numerical methods, structural mechanics and strength of materials as well as finite element method FEM

Courses form and teaching methods:

Lectures and computer laboratories with some theoretical comments

Form and terms of complete the course - requirements and assessment methods:

The final notes depend on preparation of computations of selected engineering problems and final exam (written and oral form)

Basic Bibliography:

Additional Bibliography: